Blue light-induced chloroplast relocation.

نویسندگان

  • Takatoshi Kagawa
  • Masamitsu Wada
چکیده

Chloroplast relocation movement is induced by blue light in most plants tested. Under weak light, chloroplasts move toward a brighter area in a cell (called low-fluence-rate response or accumulation movement), but they avoid strong light and move away from the light (called high-fluence-rate response or avoidance movement). Recently, mutants deficient in the chloroplast avoidance movement were isolated from Arabidopsis thaliana. The results of mutant analyses revealed that the phototropin photoreceptors phot1 and phot2 both control chloroplast accumulation while phot2 alone controls the avoidance movements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana.

Phototropin 1 (phot1) and phot2, which are blue light receptor kinases, function in blue light-induced hypocotyl phototropism, chloroplast relocation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Previous studies have shown that the proteins RPT2 (for ROOT PHOTOTROPISM2) and NPH3 (for NONPHOTOTROPIC HYPOCOTYL3) transduce signals downstream of phototropins to induce the phototropi...

متن کامل

Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens.

Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were cl...

متن کامل

Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation.

UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvat...

متن کامل

Controlling Organelle Positioning: A Novel Chloroplast Movement Protein

It has been recognized for more than a century that chloroplasts alter their distribution within cells depending on the external light conditions. Senn (1908) documented light-induced chloroplast movement in a number of higher plants and algae, and the phenomenon has long been accepted as a means of optimizing photosynthetic light absorption under changing light conditions. Thus, chloroplasts c...

متن کامل

Two Coiled-Coil Proteins, WEB1 and PMI2, Suppress the Signaling Pathway of Chloroplast Accumulation Response that Is Mediated by Two Phototropin-Interacting Proteins, RPT2 and NCH1, in Seed Plants

Chloroplast movement is induced by blue light in a broad range of plant species. Weak light induces the chloroplast accumulation response and strong light induces the chloroplast avoidance response. Both responses are essential for efficient photosynthesis and are mediated by phototropin blue-light receptors. J-DOMAIN PROTEIN REQUIRED FOR CHLOROPLAST ACCUMULATION RESPONSE 1 (JAC1) and two coile...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 43 4  شماره 

صفحات  -

تاریخ انتشار 2002